Dose-volume histogram prediction using density estimation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dose-volume histogram prediction using density estimation.

Knowledge of what dose-volume histograms can be expected for a previously unseen patient could increase consistency and quality in radiotherapy treatment planning. We propose a machine learning method that uses previous treatment plans to predict such dose-volume histograms. The key to the approach is the framing of dose-volume histograms in a probabilistic setting.The training consists of esti...

متن کامل

MDL Histogram Density Estimation

We regard histogram density estimation as a model selection problem. Our approach is based on the information-theoretic minimum description length (MDL) principle, which can be applied for tasks such as data clustering, density estimation, image denoising and model selection in general. MDLbased model selection is formalized via the normalized maximum likelihood (NML) distribution, which has se...

متن کامل

Brachytherapy dose-volume histogram computations using optimized stratified sampling methods.

A stratified sampling method for the efficient repeated computation of dose-volume histograms (DVHs) in brachytherapy is presented as used for anatomy based brachytherapy optimization methods. The aim of the method is to reduce the number of sampling points required for the calculation of DVHs for the body and the PTV. From the DVHs are derived the quantities such as Conformity Index COIN and C...

متن کامل

Nml-optimal Histogram Density Estimation

Density estimation is one of the central problems in statistical inference and machine learning. Given a sample of observations, the goal of histogram density estimation is to find a piecewise constant density that describes the data best according to some pre-determined criterion. Although histograms are conceptually simple densities, they are very flexible and can model complex properties lik...

متن کامل

Information-Theoretically Optimal Histogram Density Estimation

We regard histogram density estimation as a model selection problem. Our approach is based on the information-theoretic minimum description length (MDL) principle. MDLbased model selection is formalized via the normalized maximum likelihood (NML) distribution, which has several desirable optimality properties. We show how this approach can be applied for learning generic, irregular (variable-wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics in Medicine and Biology

سال: 2015

ISSN: 0031-9155,1361-6560

DOI: 10.1088/0031-9155/60/17/6923